strictly kähler-berwald manifolds with constant‎ ‎holomorphic sectional curvature

Authors

x. chen

r. yan

abstract

in this paper‎, ‎the‎ ‎authors prove that a strictly kähler-berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ kähler manifold‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

full text

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

full text

Totally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures

In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...

full text

Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature

In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...

full text

integral inequalities for submanifolds of hessian manifolds with constant hessian sectional curvature

in this paper, we obtain two intrinsic integral inequalities of hessian manifolds.

full text

Finsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature

The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 41

issue 1 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023